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Abstract 

Background:  Pituitary adenoma (PA) may compress the optic apparatus, resulting in impaired vision. Some patients 
can experience improved vision rapidly after surgery. During the early period after surgery, however, the change in 
neurofunction in the extravisual cortex and higher cognitive cortex has yet to be explored.

Objective:  Our study focused on the changes in the extravisual resting-state networks in patients with PA after vision 
restoration.

Methods:  We recruited 14 patients with PA who experienced visual improvement after surgery. The functional 
connectivity (FC) of 6 seeds [auditory cortex (A1), Broca’s area, posterior cingulate cortex (PCC) for the default mode 
network (DMN), right caudal anterior cingulate cortex for the salience network (SN) and left dorsolateral prefrontal 
cortex for the executive control network (ECN)] were evaluated. A paired t test was conducted to identify the differ-
ences between two groups of patients.

Results:  Compared with their preoperative counterparts, patients with PA with improved vision exhibited decreased 
FC with the right A1 in the left insula lobule, right middle temporal gyrus and left postcentral gyrus and increased FC 
in the right paracentral lobule; decreased FC with the Broca in the left middle temporal gyrus and increased FC in the 
left insula lobule and right thalamus; decreased FC with the DMN in the right declive and right precuneus; increased 
FC in right Brodmann area 17, the left cuneus and the right posterior cingulate; decreased FC with the ECN in the 
right posterior cingulate, right angular and right precuneus; decreased FC with the SN in the right middle temporal 
gyrus, right hippocampus, and right precuneus; and increased FC in the right fusiform gyrus, the left lingual gyrus and 
right Brodmann area 19.

Conclusions:  Vision restoration may cause a response of cross-modal plasticity and multisensory systems related to 
A1 and the Broca. The DMN and SN may be involved in top-down control of the subareas within the visual cortex. The 
precuneus may be involved in the DMN, ECN and SN simultaneously.

Keywords:  Cross-modal plasticity, Default mode network, Resting-state functional magnetic resonance imaging, 
Salience network, Visual improvement
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Background
Experience-dependent plasticity gives individuals the 
ability to shape the visual cortex and maintain its normal 
function. It is present not only in the developing visual 
cortex but also in the adult visual cortex [1]. Therapeu-
tic interventions can also trigger plastic changes in the 
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aging visual cortex by restoring vision. Cataract surgery 
induced use-dependent structural plasticity in the sec-
ondary visual cortex (V2) by restoring impaired vision, 
and activity-dependent cortical plasticity was preserved 
in the aging visual cortex [2]. The responses to motion in 
the dorsal visual pathway decreased bilaterally and those 
to faces in the right ventral visual pathway increased 
after visual restoration [3]. In patients with Pituitary 
adenoma (PA) who had improved vision at approximately 
3  months after the operation, the results showed that 
regional homogeneity (ReHo) decreased or increased 
within the visual cortex [4]. Most of these studies focused 
on neuroplasticity changes within the visual cortex; vis-
ual restoration can lead to plasticity in the subareas of the 
multisensory and multimodal systems beyond the visual 
cortex [4].

Cross-modal plasticity refers to the capacity to develop 
structural and functional changes to execute other intact 
senses when sensory input is lost. For compensation, the 
brain develops or strengthens corticocortical or subcor-
ticocortical connections between the deprived and intact 
sensory regions [5, 6]. The loss of vision from birth trig-
gers many compensatory plastic changes. The occipital 
cortex can be recruited by other nonvisual inputs because 
of the cross-modal reorganization of the brain [7]. The 
primary visual cortex (V1) was found to process auditory 
signals in persons with low-vision and those who suf-
fered from blindness [7–11]. The visual cortex in humans 
with congenital blindness can control speech function 
and semantic processing [12, 13]. The auditory cortex 
can also process vision in deaf adults [14–16]. Although 
many studies have shown cross-modal plasticity in the 
loss of vision input, little has been reported about this 
neuroplastic change in the brain during vision recovery.

The visual cortex in humans with congenital blindness 
exhibits decreased functional connectivity (FC) with the 
frontal motor, parietal somatosensory and temporal mul-
tisensory areas [17] and increased FC with the inferior 
frontal triangular areas [18]. Many studies have shown 
that the visual cortex dynamically interacts with higher 
cognitive areas [19, 20]. In PA patients with visual impair-
ment, a researcher identified increased FC between the 
visual cortex and subareas in the default mode network 
(DMN) and salience network (SN) [21]. Many of these 
studies exploring the connection between the vision cor-
tex and other higher cognitive areas mainly focused on 
persons with early blindness or low vision. No study has 
reported of this neuroplasticity change in the brain after 
vision restoration thus far. The changes in the functional 
connection between the vision cortex and higher cogni-
tive areas in patients with vision recovery remain unclear.

PA may compress the optic apparatus and cause 
impaired vision. Endoscopic transsphenoidal surgery 

is minimally invasive and does not damage the visual 
cortex or neighboring areas. Some patients can experi-
ence improved vision rapidly after surgery. During the 
early period following surgery, however, the change 
in neurofunction in the extravisual cortex and higher 
cognitive cortex has yet to be explored. Therefore, 
we enrolled patients with PA with improved vision at 
approximately 3 days after a transsphenoidal operation. 
Our study focused on the changes in the extravisual 
resting-state networks in patients with PA after vision 
restoration. Furthermore, we aimed to explore the plas-
ticity of the auditory, language and higher cognitive 
networks that extend beyond the visual cortex after 
vision improvement.

Materials and methods
Subjects
Fourteen patients with PA with visual damage were 
recruited in this study. All patients underwent endo-
scopic transsphenoidal surgery and had improved vision 
rapidly after the surgery. The inclusion criteria were as 
follows: age varied between 18 and 65  years; corrected 
vision acuity was below 1.0 (20/20) before the opera-
tion; no ophthalmologic diseases or other intracranial 
lesions that disturbed the visual apparatus or cortex were 
found; vision recovery at 3 days after surgery (corrected 
vision acuity improved by at least 0.2) was needed; and 
no severe electrolyte imbalance, hypopituitarism or other 
complications occurred after surgery. This study was 
approved by the Ethics Committee of the hospital. Writ-
ten informed consent was obtained from the patients.

Data acquisition
The patients were scanned one day preoperatively and 
three days postoperatively on a 1.5 T MR system (Espree, 
Siemens Medical Solution, Erlangen, Germany) in the 
diagnostic room of the iMRI brain suite [22]. We used a 
foam pad to minimize head movement and earplugs to 
reduce surrounding noise during scanning. During the 
resting-state functional MRI (RS-fMRI) scan, we told 
the patients to remain motionless and keep their eyes 
closed and think about nothing. RS-fMRI data were 
acquired using an echo-planar image pulse sequence 
[26 axial slices, slice thickness = 4.5 mm, flip angle = 90°, 
and field of view (FOV) = 224 × 224  mm, repetition 
time = 2000 ms and echo time = 45 ms]. A T1-weighted 
sagittal anatomical image was also obtained using a gra-
dient echo sequence (192 slices, slice thickness = 1 mm, 
inversion time = 1100  ms, flip angle = 15°, number 
of excitations = 1, FOV = 256 × 256  mm, repetition 
time = 1970 ms, and echo time = 2.39 ms).
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Clinical and neuro‑ophthalmologic assessments
The cognition of all patients was evaluated with a Mini-
Mental State Examination before surgery. The ophthal-
mologic examination was performed within 2 days prior 
to the operation and at approximately 3  days after the 
operation. The best-corrected visual acuity was measured 
for distance with the E chart and reported on the deci-
mal scale. The ophthalmic fundus examination was made 
with a nonmydriatic retinal camera (Topcon, Japan).

Data preprocessing
The RS-fMRI data were preprocessed with SPM8 (http://​
www.​fil.​ion.​ucl.​ac.​uk/​spm) and a pipeline analysis tool-
box, DPARSF (http://​www.​restf​mri.​net/) [23]. The first 
ten volumes were deleted to stabilize the fMRI signal and 
allow the participants time to adapt to the circumstances. 
The subsequent data processes consisted of slice timing 
correction and head motion correction (head motion 
parameters were < 3  mm in translation and < 3° in rota-
tion). To further reduce the effects of head motion on 
the estimates of RS activity, we censored volumes within 
each participant’s fMRI time series that were associated 
with sudden head motion. For each participant, the fMRI 
volumes were censored if the framewise displacement 
of the head position, which was calculated as the sum of 
the absolute values of the derivatives of the realignment 
estimates, was greater than 0.5. The data were then nor-
malized (T1-weighted image-based spatial normaliza-
tion to the Montreal Neurological Institute space). After 
smoothing, the linear trend of time courses was removed, 
and then temporal bandpass filtering (0.01–0.08 Hz) was 
performed.

FC and statistical analysis
Regions of interest (ROIs) were taken from the litera-
ture [24–27]. They were defined as 6-mm radius spheres 
in both hemispheres. We selected 6 seeds to assess FC 
(Table 1). These seeds were selected within the extravis-
ual area [auditory cortex (A1), Broca’s area, posterior 
cingulate cortex (PCC)/precuneus for the DMN, right 

caudal anterior cingulate cortex for the SN and left dor-
solateral prefrontal cortex for the executive control net-
work (ECN)].

Before FC calculation, nonneuronal-related covariates, 
including six parameters of head motion correction, the 
average time courses of the whole brain (global mean 
signal), the average time courses within the white matter 
mask, and the average time courses within the cerebral 
spinal fluid (CSF) mask, were removed from the pre-
processed data by linear regression analysis. Then, the 
images were smoothed with a 6-mm FWHM Gaussian 
kernel. We computed the FC between each seed region 
and each voxel within the whole-brain mask. To improve 
data normality, the individual FC maps were transformed 
to z-maps using Fisher’s z-transformation. The z values 
were entered into a voxelwise paired t test to determine 
the brain regions that presented significant differences in 
correlation between the pre- and postoperation groups 
with separate seed regions. The AlphaSim method, which 
was implemented in REST, was used to correct for multi-
ple comparisons. The corrected value of p < 0.05 (uncor-
rected p < 0.001 and a minimum of 40 voxels in a cluster) 
was chosen as the threshold.

Results
Studied population
Fourteen patients (male/female 7:7) were included in 
the final analyses. The mean age was 46.3  years (range 
24–62 years). The main demographic and clinical charac-
teristics of the patients are listed in Table 2.

RS‑fMRI analysis
Differences in FC after surgery (auditory ROIs)
Compared with that of their preoperative counterparts, 
decreased FC with right A1 was identified in the left 
insula lobule, right middle temporal gyrus and left post-
central gyrus (Fig.  1, Table  3). Increased FC with right 
A1 was identified in the right paracentral lobule (Fig. 1, 
Table 3).

Table 1  Regions of interest (ROIs)

Left hemisphere Right hemisphere Literature reference

X Y Z X Y Z

Areas

 A1/BA41 − 42 − 21 7 56 − 13 8 Rademacher et al. [24]

 Broca − 42 26 17 Binkofski et al. [25]

 DMN − 4 − 52 22 Laird et al. [26]

 ECN − 32 41 13 Seeley et al. [27]

 SN 4 16 33 Seeley et al. [27]

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net/)
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Differences in FC after surgery (language ROIs)
Compared with that of their preoperative counterparts, 
decreased FC with the Broca was identified in the left 
middle temporal gyrus (Fig.  2, Table  3). In addition, 

compared with preoperative FC, increased FC with the 
Broca was identified in the left insula lobule and right 
thalamus (Fig. 2, Table 3).

Differences in FC after surgery (DMN ROIs)
Compared with that of their preoperative counterparts, 
decreased FC with the DMN was identified in the right 
declive, left cingulate gyrus and right precuneus (Fig. 3, 
Table  3). additionally, compared with preoperative FC, 
increased FC with the DMN was identified in right Brod-
mann area 17, the left cuneus and the right posterior cin-
gulate/BA 30 (Fig. 3, Table 3).

Differences in FC after surgery (ECN ROIs)
Compared with that of their preoperative counterparts, 
decreased FC with the ECN was identified in the right 
posterior cingulate, right angular and right precuneus 
(Fig. 4, Table 3).

Differences in FC after surgery (SN ROIs)
Compared with that of their preoperative counterparts, 
decreased FC with SN was identified in the right mid-
dle temporal gyrus, right hippocampus, right corpus 
callosum and right precuneus (Fig.  5, Table  3). Moreo-
ver, compared with preoperative FC, increased FC with 
the SN was identified in the right fusiform gyrus, the left 

Table 2  The main demographic and clinical characteristics of 
the patients

No. Age (Years) Vision impairment 
duration (months)

Visual 
acuity(preop/
postop)

Left Right

1 44 6 1/1 0.2/0.5

2 54 2 0.15/0.2 0.1/0.3

3 49 10 0.5/0.8 1/1

4 55 24 0.4/0.6 0.6/0.8

5 46 12 0.2/0.5 0.3/0.4

6 65 1 1/1 0.6/0.8

7 31 2 0.8/0.8 0.4/0.6

8 54 6 0.6/0.9 0.8/0.8

9 46 12 0.3/0.5 0.4/0.5

10 62 12 0.15/0.4 0.8/0.8

11 52 39 0.15/0.4 0.8/0.8

12 40 24 0.5/0.6 0.3/0.5

13 26 0.25 0.8/0.8 0.15/0.4

14 24 24 1/1 0.6/0.9

Fig. 1  Brain areas exhibited significantly different FCs with the right A1 in PAs (postoperative vs preoperative)
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lingual gyrus/BA 19 and right Brodmann area 19 (Fig. 5, 
Table 3).

Discussion
RS-fMRI is a noninvasive measure of neuronal function 
when patients are at rest [28, 29]. FC is widely used in 
RS-fMRI studies. FC refers to the temporal correlation 
between spatially remote neurophysiological events [30]. 
FC analyses can offer high spatial resolution and high 
spatial specificity relative to where the corresponding 
changes in neurophysiological signals take place [31]. We 
investigated FC in extravisual resting-state networks in 
patients with pituitary adenoma with vision restoration 
using a seed-based approach with a priori defined ROIs. 
Our data revealed a mixture of increases and decreases in 
FC in the brain network.

Our data showed decreased FC with the right A1 in the 
right middle temporal gyrus (MT). The results may imply 
that there was a coexisting neural connection between 
the right A1 and MT, and the FC decreased when vision 
was restored. The middle temporal complex (MT/MST) 
is an area specialized for the procession of motion vision 
[32–35]. Recent studies also show that the visual motion 

area MT +/V5 responds to auditory motion [36, 37]. In 
sighted individuals, MT/MST responds to motion per-
ception in the visual modality but not to sound [35]. In 
contrast, the MT/MST areas of individuals with con-
genital blindness responds to auditory and tactile motion 
[38]. Therefore, blindness can cause a multimodal 
response in the MT/MST region. In individuals who 
afflicted by early blindness who achieved partial visual 
restoration in adulthood, auditory motion responses 
were observed within the MT/V5 area. Therefore, Saenz 
et  al. [36] concluded that auditory and visual responses 
coexist after vision restoration. Jiang et  al. [10] showed 
that auditory motion responses increased in the MT area 
and decreased in the right planum temporale in sight-
recovery subjects. Therefore, the authors proposed that 
the cortical plasticity caused by early blindness is perma-
nent and can persist even after visual restoration. Neuro-
plasticity may have an adaptive or maladaptive effect on 
the restoration of the deprived sense [9]. Strelnikov et al. 
[39] showed that synergy between the auditory and vis-
ual areas plays a key role in cross-modal plasticity. Alink 
et al. [40] showed that the auditory motion complex and 
the visual motion area hMT/V5 + are involved in the 

Table 3  Group differences in FC (postoperative vs. preoperative)

Seed Brain region Peak intensity Peak MNI coordinate Cluster 
size 
(voxels)x y z

Auditory (R) Insula (L) − 8.0798 − 36 − 9 − 12 61

Middle temporal gyrus (R) − 6.7219 60 − 21 − 9 63

Postcentral gyrus (L) − 8.2551 − 60 − 12 18 47

Paracentral lobule (R) 8.1151 6 − 42 51 80

Broca Middle temporal gyrus (L) − 7.8379 − 60 − 12 − 15 56

Insula (L) 7.3353 − 36 − 12 − 6 56

Thalamus (R) 8.8303 18 − 12 9 62

DMN Declive (R) − 8.282 3 − 78 − 30 73

Brodmann area 17 (R) 7.976 12 − 105 − 3 45

Cuneus (L) 6.0238 − 6 − 87 15 49

Posterior cingulate (R)/BA 30 8.5754 18 − 60 9 51

Cingulate gyrus (L) − 12.2874 − 3 − 18 27 48

Precuneus (R) − 6.8185 9 − 63 36 43

ECN Posterior cingulate (R) − 6.5355 9 − 39 21 46

Angular (R) − 8.0772 33 − 57 30 80

Precuneus (R) − 5.6647 9 − 48 60 58

SN Fusiform gyrus (R) 6.9667 33 − 69 − 15 74

Lingual gyrus (L)/BA 19 5.9544 − 9 − 60 − 3 64

Middle temporal gyrus (R) − 6.5879 63 − 39 − 6 44

Hippocampus (R) − 7.8909 33 − 18 − 9 92

Brodmann area 19 (R) 5.9635 42 − 84 3 42

Corpus callosum (R) − 7.6753 15 9 24 44

Precuneus (R) − 7.239 3 − 63 24 51
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Fig. 2  Brain areas exhibited significantly different FCs with the broca in PAs (postoperative vs preoperative)

Fig. 3  Brain areas exhibited significantly different FCs with the DMN in PAs (postoperative vs preoperative)
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generation of a cross-modal dynamic capture illusion and 
that audiovisual integration occurs in early motion areas. 
Our results may imply that coexisting neural connections 

between the right A1 and MT + decreased after vision 
restoration. To the best of our knowledge, we did not 
find a possible reason for the decreased FC of the right 

Fig. 4  Brain areas exhibited significantly different FCs with the ECN in PAs (postoperative vs preoperative)

Fig. 5  Brain areas exhibited significantly different FCs with the SN in PAs (postoperative vs preoperative)
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A1 and MT + , and more fMRI studies are needed in the 
future.

It is widely accepted that the occipital cortex of humans 
who are blind is involved in language processing [13]. 
Braille reading in individuals who are blind triggers a 
large-scale network of the brain cortex, including pos-
terior and medial occipital areas, fusiform gyrus, area 
hMT +, inferior temporal gyrus, inferior frontal, prefron-
tal, intraparietal sulcus, and somatosensory motor areas 
[41]. In subjects with congenital blindness, the increased 
connectivity between the visual cortex and Broca’s area 
might be related to the role of the occipital cortex in 
semantic processing [13, 42]. Deen et  al. [42] proposed 
that there is coactivation between Broca’s area and most 
of the occipital cortex. Ricciardi et  al. [38] showed that 
the increased FC between Broca’s area and hMT + might 
be related to the role of tactile flow processing in Braille 
reading. There are two explanations for the mechanisms 
of cross-modal plasticity observed in the occipital cor-
tex. One is that cross-modal plasticity arises through 
enhancing existing bottom-up sensory connections 
from sensory areas, and sensory thalamic input during 
development can reorganize cortical function. The other 
is that cross-modal plasticity in adults who are blind is 
activated by top-down feedback from higher-order pol-
ymodal and amodal cortices [13, 43]. Our results may 
imply that FC between the Broca and the left middle tem-
poral gyrus decreased after visual restoration. However, 
the mechanism resulting in functional alterations in the 
Broca after vision restoration remains to be elucidated, 
and more fMRI studies are needed in the future.

Our data show that decreased FC with the right A1 
was identified in the left insula lobule and left postcen-
tral gyrus and increased FC with the right A1 was iden-
tified in the right paracentral lobule. Increased FC with 
the Broca was identified in the left insula lobule and 
right thalamus. The left insula lobule, left postcentral 
gyrus, right paracentral lobule, and right thalamus are 
subareas of the multisensory system [44]. The multi-
sensory system at the cortical locations consists of the 
frontal lobe, temporal lobe, parietal lobe and insula. The 
multisensory system at subcortical locations involves 
the superior colliculus and basal ganglia [44, 45]. Insu-
lar lesions can result in a multisensory deficiency [46]. 
The anterior insula has connections with the orbital-
frontal lobe, thalamus and limbic lobe. The posterior 
insula has connections with the frontal, temporal, pari-
etal lobe and thalamus [47, 48]. The thalamus plays a 
crucial role in multisensory integration processes [49]. 
It has been accepted that early sensory experience plays 
an important role in shaping the development of the 
neural circuitry underlying multisensory processes. In 
lid-sutured monkeys, studies have shown that visual 

and multisensory areas become less responsive to visual 
stimulation [50–52]. In cats reared in darkness, studies 
have shown that multisensory neurons at cortical and 
subcortical sites cannot integrate cross-modal inputs [53, 
54]. In individuals with congenital dense bilateral cata-
racts, studies have revealed that their ability to integrate 
more complex cross-modal stimuli (e.g., speech input) 
is impaired [55, 56], despite a gain in reaction times for 
simple cross-modal stimuli (e.g., simultaneously pre-
sented light flashes and noise bursts) compared to their 
unimodal counterparts [57]. Some studies have proposed 
that superior temporal areas (particularly the superior 
temporal sulcus) are critical sites for multisensory audio-
visual integration [58, 59]. Calvert et al. [58] showed that 
multisensory audio-visual integration was within extras-
triate visual areas. When the brain receives streams of 
information from multiple sensory modalities, visual 
information is more frequently preferentially processed 
than the other sensory modalities. Multisensory informa-
tion competes for preferential access to consciousness. 
In terms of multisensory competition, neural represen-
tations in the dominant sensory modality may suppress 
neural representations in the dominated modalities. 
Weissman et al. [60] reported that enhanced prestimulus 
activity in the prefrontal cortex and decreased prestim-
ulus activity in the DMN predicted better task perfor-
mance. Some connectivity studies on visual and auditory 
activity have shown that sensory systems have dynamic 
interactions with the prefrontal cortex, the sensorimo-
tor cortex, and the DMN during multisensory competi-
tion. The mechanism of multisensory competition is still 
unclear. One theory that describes this compensation is 
that top-down control from the prefrontal cortex domi-
nates the outcome of multisensory competition. The 
other is that the bottom-up processing in the sensory 
systems decides the outcome. Huang et al. [61] revealed 
that visual dominance originated from top-down con-
trol, while auditory dominance originated from altered 
sensory processing in the auditory cortex. Our data show 
that the functional connection between the right A1 and 
left insula lobule and between the right A1 and left post-
central gyrus decreased and that between the right A1 
and right paracentral lobule increased. The functional 
connection between the Broca and the left insula lobule 
and right thalamus increased. The study indicates that 
visual restoration leads to different multisensory interac-
tions within the cortical and subcortical regions, but the 
mechanism is not clear.

The DMN involves the PCC, medial prefrontal cortex 
and lateral parietal cortex. The DMN is activated in the 
resting condition and is deactivated in the task condition. 
This network plays a role in the detection and monitoring 
of environmental events and internal mentation [62–64]. 
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Our data show that FC between the DMN and right Brod-
mann area 17 and the left cuneus increased. When the 
DMN detects decreased visual cortical activity, decreased 
deactivation in the DMN may likely occur. Strong DMN 
activity is related to reduced visual cortical excitability 
[65]. Our previous data showed that FC decreased in 
the visual cortex after vision recovery (results not pre-
sented in the paper), and this study revealed decreased 
FC with right A1 and Broca in the right middle tempo-
ral gyrus. Therefore, it may be appropriate to propose 
that decreased visual cortex activity in some way incurs 
decreased DMN deactivation (stronger activity). It was 
also assumed that the compensatory mechanism arose as 
feedback connections by the top-down influences of the 
DMN. However, the mechanism resulting in functional 
alterations in the DMN after vision restoration remains 
to be elucidated. We also found a decrease in the FC 
between the DMN and the cerebellum (right declive). 
The cerebellum interacts with the frontal eye fields [66, 
67] and participates in the control of eye movement [68, 
69]. Our data propose that vision improvement leads to 
decreased function of the cerebellum with DMN.

The ECN is shown to be activated when fMRI tasks 
include executive functions. The ECN includes the dor-
solateral prefrontal cortex and posterior parietal cortex 
[70–72]. This network is activated when a task requires 
cognitive control and working memory [27]. Our data 
show that decreased FC with the ECN was identified in 
the right posterior cingulate, right angular and right pre-
cuneus after vison restoration. The posterior cingulate/
precuneus is a very important part of the DMN. The 
angular gyrus (AG) plays a role in language and semantic 
processing [73, 74], spatial attention and orienting [75]. 
The AG was identified as an important parietal node of 
the DMN [76–78] and was reported to have task-related 
deactivations [79]. Therefore, this result may indicate 
that there is contrary activity in the DMN and CEN after 
vision recovery. Consistent with our results, some studies 
show that the DMN and CEN have antagonistic activity 
in the resting state [72]. Chen et  al. [80] found that the 
ECN has inhibitory control over the DMN. Bauer et  al. 
[81] showed that the ECN negatively regulates the DMN. 
Whitfield-Gabrieli et  al. [82] reported that the anticor-
relations between the DMN and ECN are associated 
with cognitive hyperactivity, such as complex working 
memory.

The SN constitutes the dorsal anterior cingulate cor-
tex, bilateral insula and presupplementary motor area. 
This network has a key role in regulating the dynamic 
changes in other networks. The SN has a function 
in the commencement of control of cognition pro-
cesses [83–85]. Our data show that increased FC with 
the SN was identified in the right fusiform gyrus, the 

left lingual gyrus/BA 19 and right Brodmann area 19. 
The results indicate that vision restoration leads to 
enhanced FC of the visual cortex with the SN. There 
is an anatomical connection between the visual cortex 
and the SN [86]. The SN was found to be involved in 
top-down attentional control [87, 88]. Our previous 
data showed that FC decreased within the visual cor-
tex after vision recovery (results not presented in the 
paper). This study revealed decreased FC with the right 
A1, Broca and SN in the right middle temporal gyrus. 
Therefore, decreased visual stimulation may result in 
enhanced FC between the visual system and the SN. 
Our data show decreased FC with the SN in the right 
hippocampus, right corpus callosum and right precu-
neus. The hippocampus is critical for learning, memory 
and cognition. The hippocampal region has been con-
sidered part of the DMN [77, 89]. The precuneus was a 
key node of the DMN. Our data show that FC between 
the DMN and right Brodmann area 17 and between 
the DMN and the left cuneus increased. Studies have 
reported that the SN drives the DMN during both 
the resting state and tasks in healthy younger popu-
lations [90, 91]. Therefore, the increased activity of 
the DMN may lead to a decreased influence of the SN 
on the DMN itself. Taken together, it is reasonable to 
posit that when decreased FC within the visual cortex 
is detected, higher than normal SN and DMN activity 
is initiated to achieve the compensatory mechanism as 
feedback connection by top-down influences, and then 
the correspondingly decreased SN activity on DMN 
occurs in the brain network.

Our data show that decreased FC with the DMN, ECN 
and SN was simultaneously identified in the right precu-
neus. The precuneus is an area with high metabolic rates 
compared to that of other networks during rest. The pre-
cuneus is widely accepted as the important structure in 
the DMN, as it assists in various behavioral functions 
[92–94]. Many studies have shown that the precuneus 
plays a vital role in autobiographical memory retrieval, 
emotional stimulus processing and reward outcome 
monitoring [95–97]. Some studies have shown that the 
SN plays a role in the dynamic switching of antagonis-
tic activity between the DMN and CEN in cognitively 
normal young brains [91, 98, 99]. Multiple experiments 
have shown that the DMN, SN, and CEN are associated 
with mindfulness [100–102] and interact with each other 
[100, 103]. During the active state of meditation, the 
between-network connectivity of the DMN, CEN and SN 
is increased [104, 105]. Our results imply that the precu-
neus may be involved in three networks and relate to the 
between-network connectivity of the DMN, CEN and SN 
after visual restoration, but the relevant mechanism is 
not clear.
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Some limitations of this study should be considered. 
First, the number of subjects in the current study was 
small, and more participants will be recruited in future 
studies. Second, most pituitary patients lose visual acuity 
and fields, and after surgery, the visual acuity and fields 
may improve. In our study, we only selected visual acu-
ity because it was easy to measure and compare before 
and after the participants underwent their operation, 
but it was difficult to quantify the visual field. In future 
studies, we will evaluate more details on the nature and 
extent of visual loss and its recovery. Third, testing for 
changes in visual function with resting-state fMRI may 
not be the most useful/direct way, but it is convenient to 
perform in patients pre- and postoperatively. Visual stim-
uli can be used to directly assess visual responses in fMRI 
experiments. In future studies, we will combine the two 
approaches.

Conclusions
In conclusion, we show the changes in extravisual rest-
ing-state networks in patients with pituitary adenoma 
(PA) with visual restoration after transsphenoidal sur-
gery. Vision restoration may cause a cross-modal plas-
ticity response and lead to the development of the 
multisensory system related to the A1 and Broca. The 
DMN and SN may be involved in top-down control of 
the subareas within the visual cortex. The ECN and SN 
have decreased FC with the DMN. The precuneus may be 
involved in the DMN, ECN and SN simultaneously after 
visual restoration. However, more studies are needed to 
explore the mechanism of neural plasticity in extravisual 
resting-state networks, as well as the mechanism of the 
interaction between the intra- and extravisual networks 
in patients with specific visual diseases.
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